
PHYSICAL REVIEW E, VOLUME 64, 066207
Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems
in the presence of noise
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We study scaling regularities associated with the effects of additive noise on the bicritical behavior of a
system of two unidirectionally coupled quadratic maps. A renormalization group analysis of the effects of noise
is developed. We outline the qualitative and quantitative differences between the response of the system to
random perturbations added to the master subsystem or the slave subsystem. The universal constants deter-
mining the rescaling rules for the intensity of the noise sources in the master and slave subsystems are found
to beg56.619036 . . . andn52.713708 . . . , respectively. A number of computer graphical illustrations for
the scaling regularities is presented. We discuss the smearing of the fine structure of the bicritical attractor and
the Fourier spectra in the presence of noise, the self-similar structure of the Lyapunov charts on the parameter
plane near the bicritical point, and the shift of the threshold of hyperchaos in dependence of the noise intensity.
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I. INTRODUCTION

Starting with the works of Feigenbaum@1#, it has become
clear that a description of the transition to chaos is not
qualitative nature only, but has a quantitative aspect as w
The problem is not restricted to enumerating the poss
bifurcation scenarios on the road from regular to chaotic
namics; there exist classes of quantitative universality a
ciated with the distinct scenarios~at least, with some of
them!, which have to be revealed and studied. Systems
different natures~iterative maps, differential equations, dela
differential equations, etc.! relating to a certain universality
class demonstrate the same scaling regularities near the
of chaos, characterized by definite universal scaling c
stants. The theoretical instrument for the analysis of th
regularities is the renormalization group~RG! approach.
Suggested first in the context of the period-doubling tran
tion to chaos by Feigenbaum, this approach was extende
many authors in applications to other universality clas
@2,3#.

In the context of a multiparameter analysis of the onse
chaos, a criticality of definite type may take place at cert
surfaces, curves, or points in parameter space. RG analy
an invaluable tool for the search, study, and classification
the critical situations. Their codimension~the number of pa-
rameters that have to be adjusted to reach criticality! is de-
termined by the number of relevant unstable eigenvector
the linearized RG equation~see, e.g., Ref.@3#!.

Wishing to apply the concepts of universality and scal
to realistic systems, or to observe scaling regularities i
physical experiment, we must account for the presence
noise. Hence a question arises concerning the effects of n
on the dynamics near the critical points associated with
various universality classes.

Again, the deep and revealing approach to this problem
based on an appropriately modified version of the RG an
sis. For the Feigenbaum criticality such an approach was
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developed in the works of Crutchfieldet al. and Shraiman
et al. @4#. As shown by these authors, to observe one m
level of period doubling one has to decrease the intensity
noise by a factorg56.61903 . . . —the universal constant
responsible for the scaling regularities of the effect of no
in the Feigenbaum universality class. Analogous analy
were undertaken, and the respective scaling constants
estimated for intermittency@5# and quasiperiodicity@6# in
dissipative systems, as well as for period doubling@7# and
KAM-torus destruction@8# in Hamiltonian systems. Never
theless, other known universality classes, in particular as
ciated with period doubling in multiparameter systems~see
Ref. @3# for a review!, have not been investigated with re
spect to the effects of noise.

An interesting class of dynamical models with nontrivi
dynamics is represented by coupled maps with unidirectio
coupling. In particular, these models were suggested to a
lyze and explain important peculiarities of turbulence
open flow systems@9#. More recently they were discussed
the context of applications to secure communication on
basis of the phenomenon of chaos syncronization@10#. In
this paper we turn to a study of the effects of noise on
so-called bicritical behavior in a model of two one
dimensional quadratic maps with unidirectional coupli
@11–17#. The bicritical point corresponds to a situation wh
both subsystems are brought to the border of chaos by tu
of two parameters controlling the period doubling in the
two maps. This may be regarded as the point of onse
hyperchaos in the unidirectionally coupled maps. Empiri
~numerical and experimental! indications of the existence o
this type of criticality and of the associated scaling regula
ties were presented in an earlier work@11#. Subsequently, a
detailed theoretical study of the bicritical behavior was u
dertaken, accurate numerical values of the scaling const
were found, and explanations of the scaling properties of
phase space and parameter space were given on the ba
the RG analysis@12,3,13#.

As it follows from the RG and universality arguments,
©2001 The American Physical Society07-1
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KAPUSTINA, KUZNETSOV, KUZNETSOV, AND MOSEKILDE PHYSICAL REVIEW E64 066207
FIG. 1. Chart of the dynamical regimes or bifurcation diagram~a! and Lyapunov chart~b! for unidirectionally coupled maps@Eq. ~1!# on
the parameter plane (l, A) without noise;B50.375. In panel~a! numbers indicate periods of regimes observed in the second subsy
‘‘Ch-I’’ is the regime of chaotic synchronization (L1.0, L2,0: chaos in the first subsystem induces the chaoslike motion of the se
subsystem!, ‘‘Ch-II’’ corresponds to chaotic motion only of the second subsystem (L1,0, L2.0), and ‘‘Hyper’’ designates the regime o
hyperchaos (L1.0, L2.0). The bicritical point is marked by a letterB on plot ~a!, and by a small cross in~b!.
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bicritical behavior may occur in systems of different natu
provided that they can be decomposed into two peri
doubling subsystems with unidirectional coupling. Besid
the somewhat artificial model of coupled quadratic maps,
bicritical point was found numerically in more realistic mo
els, such as two Chua circuits@14#, driven nonlinear oscilla-
tors @15#, and laser systems with unidirectional couplin
@16#. Moreover, the bicritical behavior was observed in e
periments with the unidirectionally coupled driven RL-dio
circuits @11,17#. Obviously, a study of the effects of noise o
the bicritical dynamics is of interest for the interpretation
these and other possible experiments. At the same tim
may be of importance for the application of the coupled m
models, e.g., for a description of phenomena in open flo
and for secure communication systems, where the effect
noise can be essential.

In Sec. II we introduce a model of two quadratic ma
with unidirectional coupling, and recall a number of signi
cant results known from previous studies. Then, in Sec.
we add random perturbations to the model and present s
numerical results to give a preliminary impression of t
effects of noise. In particular, we obtain a rough estimate
a scaling constant associated with the noise. Section IV
devoted to an accurate RG analysis of the effects of nois
the bicritical behavior. We derive the RG equation, a
present the results of a numerical solution including the
proved high precision value for the universal constant.
Sec. V further conclusions following from the RG analys
are discussed, and computer illustrations for the scaling re
larities are presented.

II. A MODEL OF TWO QUADRATIC MAPS
WITH UNIDIRECTIONAL COUPLING.

THE BICRITICAL POINT

Let us consider a system of two unidirectionally coupl
quadratic maps@12,3,13#,
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xn11512lxn
2 , yn11512Ayn

22Bxn
2 , ~1!

wherex andy are the dynamical variables for the first~‘‘mas-
ter’’ ! and second~‘‘slave’’ ! subsystems, respectively;l and
A are parameters that control the period doubling in the s
systems, andB is a coupling parameter. Figure 1~a! shows a
chart of the dynamical regimes~a bifurcation diagram! of the
model on the parameter plane (l,A) for B5const. As the
master systemx does not ‘‘feel’’ the dynamics ofy, the bi-
furcations in that subsystem occur along vertical lines, c
responding to the bifurcation values ofl for a single qua-
dratic map. The period-doubling bifurcation lines converg
in accordance with the Feigenbaum law, to the critical li
l5lF51.401155 . . . . On theother hand, for any fixedl
,lF an increase ofA gives rise to a sequence of perio
doublings in the slave system. The cascade starts fro
period corresponding to dynamics of the master system a
given l, because this periodicity is induced in the seco
subsystem due to the coupling. The limit curve of the perio
doubling accumulation in the slave systemA5AF(l) meets
the critical line of the master system at some point. This
what we call the bicritical point. In particular, for B
50.375 it is located at

lc5lF51.401155189092 . . . , Ac51.124981403 . . . .
~2!

The attractor at the bicritical point is a multifractal obje
embedded in two-dimensional phase space (x,y). The self-
similarity of the fractal structure near the origin is govern
by the Feigenbaum constanta522.502907875 . . . for x,
and by a constantb521.505318159 . . . for y @12#. The
vicinity of the bicritical point is characterized by two
dimensional scaling. One scaling factor coincides with t
of Feigenbaum,d154.669201609 . . . while the other is dis-
tinct, d252.39272443 . . . @12#. Subsequent magnification
of the picture in a neighborhood of the bicritical point b
7-2
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SCALING PROPERTIES OF BICRITICAL DYNAMICS . . . PHYSICAL REVIEW E 64 066207
FIG. 2. Lyapunov charts in the presence
noise in the first~master! subsystem fork50.01
~a! andk50.06~b!; «50. The gray scales repre
sent the values of the Lyapunov exponentL2, as
in Fig. 1~b!.
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factorsd1 andd2 along the horizontal and vertical axes, r
spectively, allow the observation of a self-reproducing str
ture.

In fact, the bicritical situation takes place on a whole de
nite curve in the three-dimensional parameter space of m
~1!, so the same regularities can be observed for other p
tive values of the coupling parameterB @13,18#. For negative
values ofB the bicritical behavior does not occur.

In Fig. 1~b! we depict the same area of parameter plane
the form of a Lyapunov chart~see Ref.@19# for previous
applications of this method!. For comparison, this is show
side by side with the chart of the dynamical regimes.

Our system has two Lyapunov exponents:L15L1(l),
which relates to the master system, andL25L2(l,A,B),
which relates to the slave system. This decomposition is p
sible, of course, due to the unidirectional nature of the c
pling. At each pixel of the two-dimensional plot we estima
the Lyapunov exponent

L25 lim
N→`

S 1

N (
n51

N

lnu2Aynu D ~3!

from numerical computations, and mark the pixel by a g
tone. We code negative values of the Lyapunov expon
~from 2` to 0! by tones from dark to light gray. White
represents zero values, and black denotes positive value
the Lyapunov exponent. This convention ensures a clea
sion of the border between regular and chaotic dynamics
contrast to the bifurcation diagram of Fig. 1~a!, the Lyapunov
chart retains a meaning in the presence of noise, so it wil
useful in our further considerations.

It is worth noting that the bicritical behavior appears
well in a model with linear coupling@11#. Indeed, if the
model map is chosen in the form

xn11512lxn
2 , yn11512ayn

21exn , ~4!

then, substituting Xn5xn21 , Yn5yn /(11e), A5a(1
1e), B5el/(11e), we observe thatXn , Yn obey pre-
cisely to Eqs.~1!. The bicritical behavior will take place a
positivee.
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III. EFFECTS OF NOISE: EMPIRICAL RESULTS AND
NUMERICAL ESTIMATE FOR THE NEW SCALING

CONSTANT

To account for noise in model~1! let us introduce two
random sequencesjn andhn . We assume thatjn andhn are
statistically independent, and represent discrete-time w
noise, i.e., the elements of each sequence at different ste
time are also independent. The maximal magnitudes ofjn
andhn are supposed to be bounded. The average forjn and
hn is zero, ^jn&5^hn&50, and the standard deviation
some constant s, ^jnjn&5^hnhn&5s2, and cross-
correlations vanish,̂ jnhm&50 for any n and m, and
^jnjm&5^hnhm&50 for nÞm. Then we set

xn11512lxn
21kjn ,

~5!

yn11512Ayn
22Bxn

21«hn ,

wherek and« are parameters that characterize the inten
of the additive noise sources in the master and slave s
systems, respectively.

If the amplitude of noise is small, and the dynamics a
considered on a large time scale, the concrete form of
probability distribution forjn and hn appears not to be es
sential, and the behavior of the noisy system will be o
universal nature~cf. Ref. @20#!. In the present computation
we definejn andhn as random values uniformly distribute
over an interval@20.5,0.5#. Hence, the standard deviatio
s51/A12.

In Figs. 2 and 3 we present Lyapunov charts obtained
the presence of noise in only the first or in the second s
system, respectively. As in Fig. 1~b!, the gray tones code
values of the Lyapunov exponentL2 defined by formula~3!.
It is interesting to compare these diagrams with Fig. 1~b! to
observe the increasing degree of smearing of the fine st
tures on the parameter plane as the noise intensity grow

The clear difference between Figs. 2 and 3 indicates
essentially distinct character of the effects of noise on
master and slave subsystems. In the first case the smeari
the fine structure in the parameter plane looks more or
diffusivelike. In contrast, in the second case smearing ta
places only along the vertical direction. Vertical borders,
7-3



of

nt

KAPUSTINA, KUZNETSOV, KUZNETSOV, AND MOSEKILDE PHYSICAL REVIEW E64 066207
FIG. 3. Lyapunov charts in the presence
noise in the second~slave! subsystem for«
50.02~a! and«50.06~b!; k50. The gray scales
represent the values of the Lyapunov expone
L2, as in Fig. 1~b!.
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sociated with the bifurcations in the master system, rem
clearly visible.

In accordance with the results of Refs.@4#, to observe
each next level of period doubling in the master system
have to decrease the noise magnitudek by a factor g
56.61903 . . . . It is natural to ask about an analogous ru
for the case when the source of noise is placed in the s
system. To give a preliminary account and obtain a rou
estimate of the associated scaling constant, in Fig. 4 we s
the plots of the variabley versus parameterA in a vicinity of
the bicritical point @Ac2DA, Ac1DA#. The other param-
eters are kept constant:l5lc51.401155 . . . and B
50.375. These pictures are analogous to the commo
known Feigenbaum bifurcation diagrams~the bifurcation
trees!. However, here they are drawn for a slave map s
jected to external driving~due to coupling with the maste
subsystem and due to the presence of a source of noise!. The
computations were performed with noise only in the sla
subsystem, i.e.,k50, while « is nonzero.

The top left panel of Fig. 4 corresponds to a definite
bitrarily chosen noise magnitude,«5«050.0005. To make
the structure distinguishable, we do not plot all values
cepted by the variabley in the process of dynamics, but on
those values that occur with a step ofDn516 iterations. The
three other diagrams are obtained under rescaling throug
period-doubling levels; that is, we increase the number
iterations and the stepDn by a factor 26, decrease the inter
val for A by d2

6, the interval fory by b6, and the magnitude
of noise by some factorn6. The constantn should be se-
lected to make the rescaled picture as similar as possib
the original. Settingn52.3, 2.7, and 3.1, we see thatn
52.7 seems to be an optimal value. For smallern the res-
caled diagram looks more noisy, and for largern less noisy
than the original.

A simple numerical procedure makes it possible to i
prove the estimate of the scaling constant. Let us turn to E
~5!, setk50, and assume« to be small. Then we can searc
for a solution in the formy5Y1« ỹ. Substituting this ex-
pression into Eqs.~5! and retaining terms up to the first ord
in «, we have

xn11512lxn
2 , Yn11512AYn

22Bxn
2 ~6!

and
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ỹn11522AYnỹn1hn . ~7!

Now we raise the last equation to the second power,
perform an averaging over the ensemble of samples for
random sequencehn . This yields

Dn1154A2Yn
2Dn11, ~8!

whereDn5^ ỹn
2&/s2. ~Here we take into account thathn and

ỹn are independent random variables by virtue of the wh
noise nature ofhn . Hence, the term̂ 2AYnỹnhn& disap-
pears:̂ 2AYnỹnhn&5^2AYnỹn&^hn&50.!

Now Eq. ~8! together with Eq.~6! appear to be a close
set of equations that may be iterated numerically. We
take critical values for the parameters,l5lc and A5Ac ,
and perform 2k iterations of Eqs.~6! and ~8! starting from
x050, Y050, andD050. We may regarduY2ku as a char-
acteristic scale for a displacement ofy of dynamical nature,

FIG. 4. Bifurcation tree in the presence of noise in the sla
system: variabley vs parameterA at l5lc . The first picture cor-
responds to a noise magnitude«5«050.0005; the others are ob
tained after a rescaling through six levels, i.e.,DA→DA/d2

6 , Dy
→Dy/b6, and«→«/n6, wheren52.3, 2.7, and 3.1, respectively
On the top left diagram each 16th iteration step fory is plotted, on
the other diagrams we plot each 1024th step.
7-4
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SCALING PROPERTIES OF BICRITICAL DYNAMICS . . . PHYSICAL REVIEW E 64 066207
and AD2k as a scale for a random displacement due to
noise. Their ratioRk5AD2k/uY2ku characterizes the relativ
effect of the noise on the dynamics. Comparing the value
Rk at two subsequent levels we come to an estimaten
>Rk11 /Rk . Performing the computations fork of order 10–
13, we findn>2.71260.002.

IV. RENORMALIZATION GROUP ANALYSIS
OF BICRITICALITY IN THE PRESENCE OF NOISE

Let us write out equations for two unidirectional
coupled noisy subsystems in following generalized forms
en
e

th

fte
,

re

e

n

06620
e

of

xn115G~xn!1kU~xn!jn ,
~9!

yn115F~xn ,yn!1«V~xn ,yn!hn1kW~xn ,yn!jn .

Obviously, Eqs.~5! represent a particular version of th
model with G(x)512lx2, U(x)51, F(x,y)512Ay2

2Bx2, V(x,y)51, andW(x,y)50.
The stochastic map@Eqs. ~9!# describes the evolution o

the system over one step of discrete time. We can app
twice to obtain the stochastic map for two steps of iterati
We suppose that the parameters of the noise magnitude
small (k, «!1) and neglect terms of second and high
orders. Then, using the rescalingx→x/a, y→y/b, we have
xn125aG„G~xn /a!…1ak@G8„G~xn /a!…U~xn /a!jn1U„G~xn /a!…jn11#,

yn125bF„G~xn /a!,F~xn /a,yn /b!…1b«@Fy8„G~xn /a!,F~xn /a,yn /b!…V~xn /a,yn /b!hn

1V„G~xn /a!,F~xn /a,yn /b!…hn11#

~10!
1bk@Fx8„G~xn /a!,F~xn /a,yn /b!…U~xn /a!jn1Fy8„G~xn /a!,F~xn /a,yn /b!…W~xn /a,yn /b!jn

1W„G~xn /a!,F~xn /a,yn /b!…jn11#.
s

Accounting for the white-noise nature of the independ
random variablesj andh, we may redefine the white-nois
random processes to represent Eqs.~10! in forms analogous
to Eqs.~9!,

xn125G1~xn!1kU1~xn!jn ,
~11!

yn125F1~xn ,yn!1«V1~xn ,yn!hn1kW1~xn ,yn!jn ,

by an appropriate selection of the amplitude functions at
noise terms.

Next the same procedure may be applied to Eqs.~11! to
obtain the stochastic map for four iterations, and so on. A
k steps we will have the maps for 2k steps of discrete time
t

e

r

xn12k5Gk~xn!1kUk~xn!jn ,
~12!

yn12k5Fk~xn ,yn!1«Vk~xn ,yn!hn1kWk~xn ,yn!jn ,

where the functions obey the recurrent functional relation

Gk11~x!5aGk„Gk~x/a!…,

Fk11~x,y!5bFk„Gk~x/a!,Fk~x/a,y/b!…,

Uk11~x!5uau$@Gk8„Gk~x/a!…#2
„Uk~x/a!…2

1@Uk„Gk~x/a!…#2%1/2, ~13!
Vk11~x,y!5ubu$@Fk,y8 „Gk~x/a!,Fk~x/a,y/b!…Vk~x/a,y/b!#21@Vk„Gk~x/a!,Fk~x/a,y/b!…#2%1/2,

Wk11~x,y!5ubu$@Fk,x8 „Gk~x/a!,Fk~x/a,y/b!…Uk~x/a!

1Fk,y8 „Gk~x/a!,Fk~x/a,y/b!…Wk~x/a,y/b!#21@Wk„Gk~x/a!,Fk~x/a,y/b!…#2%1/2.
s-
ted
~Here the indicesx and y denote the derivatives ofF with
respect to the first or second argument of this function,
spectively.!

As we take the original map at the bicritical point and s
a5aF522.5029 . . . and b521.5053 . . . ; then Gk(x)
and Fk(x,y) converge to definite limit functionsg(x) and
f (x,y). These functions satisfy a set of functional equatio
-

t

s

g~x!5ag„g~x/a!…,
~14!

f ~x,y!5b f „g~x/a!, f ~x/a,y/b!….

Equations~14! determine the fixed point of the RG tran
formation responsible for the universality class associa
with the bicritical behavior@12,3#. The first line in Eqs.~14!
7-5
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obviously coincides with the well-known Feigenbaum
Cvitanovićequation@1#. Here it is convenient to normalizex
andy in such way thatg(0)51 and f (0,0)51.

At large k the functionsUk(x) and Vk(x,y) will behave
asymptotically as

Uk~x!>AVkF~x!, Vk~x,y!>AQkC~x,y!, ~15!

whereV5g2 andQ5n2 are the largest eigenvalues, andF
andC the corresponding eigenfunctions for the linear fun
tional equations:

VF~x!5a2$@g8„g~x/a!…#2F~x/a!1F„g~x/a!…%,
~16!

and

QC~x,y!5b2$@ f y8„g~x/a!, f ~x/a,y/b!…#2C~x/a,y/b!

1C„g~x/a!, f ~x/a,y/b!…%, ~17!

respectively.
Equation~16! describes the effect of noise on the mas

system, and, of course, it coincides with the previously
tained expression for a single noisy period-doubling map@4#.
As found numerically, the largest eigenvalue is

g56.619036513 . . . . ~18!

Figure 5~a! shows the eigenfunctionF(x).
Equation ~17! describes the effect of the noise sour

added to the slave system. It contains the universal funct
g(x) and f (x,y) relating to the fixed point solution of th
RG equation~14!. These functions were computed in a for
of polynomial expansions over even powers of the argume
@see Refs.@1,21,3# for the coefficients of expansion forg(x),
and Refs.@12,3# for f (x,y)#. Using these data we have co
structed the functional transformation of the right-hand s
of Eq. ~17! as a computer program. The unknown functi
C(x,y) is represented by a table of its values on a rectan
lar two-dimensional lattice in the square21<x<1, 21
<y<1 and by a fourth-order polynomial interpolatio
scheme between the lattice sites. Taking random initial c
ditions forC(x,y), we then perform a functional transforma
tion and normalize the resulting function:C0(x,y)
5C(x,y)/C(0,0). This operation is repeated many time
until the form of the function stabilizes, and the value
C(0,0) ~before the normalization! becomes equal toQ5n2.
The result of these computations for the new scaling cons
is

n52.713708 . . . , ~19!

which is in a reasonable agreement with the estimates of
III. Figure 5~b! shows the three-dimensional plot for th
eigenfunctionC(x,y).

With respect to the last unknown function,Wk(x,y), it
follows from Eq.~13! that under subsequent RG transform
tion it will asymptotically behave in accordance with th
equation
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Wk11~x,y!5ubu$@ f x8„g~x/a!, f ~x/a,y/b!…Uk~x/a!

1 f y8„g~x/a!, f ~x/a,y/b!…Wk~x/a,y/b!#2

1@Wk„g~x/a!, f ~x/a,y/b!…#2%1/2. ~20!

Without the term proportional toUk , it takes the same
form as the equation for the functionVk , so the asymptotic
solution would behave asnk. This component may be ac
counted for in the termVk in the stochastic map@Eq. ~12!#.
In presence of the termUk the solution is forced to behave a
gk ~note thatg.n). So, the equation forW does not provide
new relevant scaling constants.

In a linear approximation with respect to the noise amp
tude the stochastic map for the evolution over 2k steps at the
bicritical point is represented asymptotically as

xn12k5g~xn!1kgkU~xn!jn ,
~21!

yn12k5 f ~xn ,yn!1«nkV~xn ,yn!hn1kgkW~xn ,yn!jn .

If we consider a slight shift of parametersl andA from
the bicritical point then additional perturbation terms app
in the equation~see Ref.@12#!:

xn12k5g~xn!1C1d1
kh1~xn!1kgkU~xn!jn ,

~22!
yn12k5 f ~xn ,yn!1C2d2

kh1~xn!1C1d1
kh12~xn!

1«nkV~xn ,yn!hn1kgkW~xn ,yn!jn .

FIG. 5. Plots of the eigenfunctions for Eq.~16!, eigenvalueV
5g2543.81164 . . . ~a!, and for Eq. ~17!, eigenvalueQ5n2

57.36414 . . . ~b!.
7-6
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Here $h1 ,h12% and $0,h2% represent eigenvectors of th
linearized RG equation without noise associated with the
genvaluesd154.6692 . . . andd252.3927 . . . , respectively.
The coefficientsC1 and C2 depend on the parameters a
vanish at the bicritical point. In a close neighborhood of t
critical point it is sufficient to account only for the leadin
terms of the expansions and setC1}(l2lc), C2}(A
2Ac).

Now let us formulate the basic scaling property that f
lows from Eqs.~22!. If we double the number of time step
~i.e., changek to k11), decrease parameter differencesDl
5l2lc andDA5A2Ac by factorsd1 andd2, respectively,
and decrease noise amplitudesk and« by factorsg andn,
then the form of the stochastic map@Eq. ~22!# remains un-
changed. Thus, with the new parameters, the noisy sys
will demonstrate the same behavior as with the old ones,
with twice the time scale.

V. SCALING PROPERTIES FOLLOWING
FROM THE RENORMALIZATION GROUP ANALYSIS

AND THEIR DEMONSTRATION
IN NUMERICAL COMPUTATIONS

Now we intend to discuss some manifestations of the
fects of noise on dynamics of the unidirectionally coupl
maps at the bicritical point and in its vicinity in view of th
scaling properties stated in Sec. IV.

A. Noisy bicritical attractor

Without noise the attractor at the bicritical point is a mu
tifractal object embedded in two-dimensional phase sp
~with an estimated fractal dimension of 1.0785! @12#. In the
presence of noise, the subtle structure of the attracto
smeared out level by level as the intensity of noise grows
accordance with the conclusions of Sec. IV, each new le
of the structure blurs when we increase the magnitude of
noise source in the master system by a factorg and the
magnitude of the noise source in the slave system by a fa
n. Figures 6 and 7 show portraits of the attractor of o
model system ~5! at the bicritical points l5lc
51.401155 . . . , A5Ac51.12498 . . . , and B50.375 on
the plane of dynamical variables (x,y) in the presence o
noise.

Figure 6 relates to the case of noise added only to
master system. The top row corresponds to the noise in
sity k050.0001, and the bottom row tok0g. Each subse-
quent plot in a row shows a box from the previous diagr
under magnification by factorsa andb along the horizontal
and vertical axes, respectively.~With an inversion, becaus
of the negativity of both factors.! Figure 7 presents analo
gous diagrams for the case when the noise source is a
only to the slave system. Here the intensity of noise is«0
50.04 for the top row, and«0n for the bottom row. On both
figures one can observe that diagrams~c!, ~f!, ~d!, and ~g!
look remarkably similar in agreement with the expected sc
ing property.

Visual comparison of Figs. 6 and 7 demonstrates an
dent qualitative difference with respect to the effects of no
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added to the master and to the slave subsystem. In the
case the structure is blurred both in the longitudinal a
transversal directions; in the second case the transversal
tal structure continue to exist in spite of the action of noi

It is worth stressing that quantitatively the effects of no
on the bicritical attractor are much stronger in the case w
the noise source is added to the master system than when
added to the slave system.~Indeed, a comparable degree
blur in the attractor structure on Figs. 6 and 7 correspond
«0 /k05400.! This circumstance is linked, obviously, wit
the fact that the scaling constant for noise intensity is ess
tially larger for the first situation.

B. Effects of noise on the Fourier spectrum

At the bicritical point both the master and slave syste
generate Fourier spectra that are hierarchically organized
contain components at frequenciesm/2k with regularly de-
creasing intensities in dependence on the level numberk. In
the master subsystem this is the well-known spectrum a
ciated with the Feigenbaum criticality@22#. In the slave sub-
system the spectrum is qualitatively similar, but quanti
tively distinct @11,12#: the decrease of the spectral intensiti
from level to level is much slower. Figure 8 illustrates
change of the spectrum generated by the slave system in
presence of noise in the master system. Each subsequen
corresponds to a larger intensity of noise. Figure 9 prese
analogous spectra for the case when the noise is added
to the slave system. The observed effect of subsequ
smearing of subtle details of the spectral structure from le
to level is more or less obvious, but we find it useful
present here the spectra because they could be directly c
pared with those obtained in physical experiments. Again
point out that influence of the noise added to the mas
system is stronger than that of noise in the slave system

C. Lyapunov exponent in the presence of noise

In accordance with the results of Sec. IV, at the bicritic
point the system will demonstrate similar behaviors for t
noise intensity parameters (k,«) as for (k/g,«/n), but with
a doubled characteristic time scale in the second case. T
the magnitudes of the Lyapunov exponents at (k/g,«/n)
must be half the magnitude at (k,«). Hence we may estimate
critical indices for the Lyapunov exponents with respect
the intensities of noise sources added to both subsyste
That is, they must behave as

L1>c0kr and L2>c1kr1c2«y, ~23!

where r5 logg 250.36675 . . . , y5 logn 250.69432 . . . ,
andc0 , c1, andc2 are some coefficients.

The scaling properties of the Lyapunov exponents
demonstrated in Fig. 10. We show the plots for the b
exponents associated with the master and slave subsys
L1 and L2, versus the parameter of noise intensityk with
«50 @~a! and ~b!#, and the plot forL2 exponent versus the
noise parameter« with k50 ~c!. A selected box is shown
with magnification by a factor 2 along the vertical axis, a
by a factorg @~a! and~b!# or n ~c! along the horizontal axis
7-7
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FIG. 6. Portraits of attractors on the phase plane (x,y) in the presence of noise in the master subsystem only;l5lc , A5Ac , B
50.375, and«50, k50.0001 for~a!–~d!, andk50.0001g for ~e!–~f!. Each subsequent diagram of the top and bottom rows reproduc
selected box from the previous plot under magnification by factorsa andb along the horizontal and vertical axes, respectively. Compare~c!
with ~f! and ~d! with ~g! to observe scaling.

FIG. 7. Portraits of attractors on the phase plane (x,y) in the presence of noise in the slave subsystem only;l5lc , A5Ac , B
50.375, k50, and«50.04 for ~a!–~d!, and «50.04n for ~e!–~f!. Each subsequent diagram of the top and bottom rows reproduc
selected box from the previous plot under magnification by factorsa andb along the horizontal and vertical axes, respectively. Compare~c!
with ~f! and ~d! with ~g! to observe scaling.
066207-8
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FIG. 8. Fourier spectra generated by the slave system at the bicritical point in the absence of noise~a! and in the presence of a nois
source in the master system atk5k050.00006~b!, k5k0g ~c!, andk5k0g2 ~d!.
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Observe the self-similarity of the pictures under this sc
change.

It is worth emphasizing that the effects of noise on t
master and on the slave subsystem are of opposite chara
In the master system the Lyapunov exponent beco
greater in the presence of noise, while in the slave syste
decreases.@In other words, the coefficientc0 in Eq. ~22! is
positive, whilec1 andc2 are negative.#

D. Self-similar arrangement of a vicinity of the bicritical point
in the parameter plane for the noisy system

In the presence of noise the structures visible on
Lyapunov chart become more and more blurred as the n
intensity grows@cf. Figs. 2 and 1~b!#. On the basis of the
scaling arguments of Sec. IV, we can now reveal a quan
tive aspect of this process. In Fig. 11 we show the Lyapu
charts for close neighborhoods of the bicritical point, whi
is located exactly at the center of each plot. Diagram~a!
relates to the case of the noise source in the master
system. The first panel~a! corresponds to the noise intensi
parameterk5k050.01, and the next two panels tok
5k0 /g and k5k0 /g2, respectively, with magnification
along the horizontal and vertical axes using the factorsd1
andd2. For the three pictures in the row the gray tones co
values ofL2 , 2L2, and 4L2 to illustrate rescaling of the
Lyapunov exponent, and to make the similarity of the str
tures clearly visible. Panel~b! supplies analogous diagram
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for the case when the noise source is in the slave subsys
The first picture corresponds to«5«050.06, and the two
others to«0 /n and«0 /n2. Observe the excellent correspo
dence of the charts in each row.

E. Scaling indices for a parameter shift of the corner point
of the region of hyperchaos

As we mentioned, in the presence of noise the Lyapun
exponent in the master system grows, while in the slave s
tem it falls. To restore the situation of the chaos thresho
i.e., that of zero Lyapunov exponents, we should decrease
control parameter of the master system and increase th
the slave system. In Fig. 12 we present a chart of the par
eter plane for a system of two unidirectionally coupled ma
@Eqs. ~5!# with the noise intensity parametersk5«50.05.
The areas marked ‘‘Ch-I’’ and ‘‘Ch-II’’ correspond to th
presence of a positive Lyapunov exponent in one of the s
systems, either in the master or in the slave system. The
of two positive exponents~hyperchaos! is designated as
‘‘Hyper.’’ Around the figure we present a set of so-calle
snapshot phase portraits~see Ref.@23#! at representative
points of the parameter plane. Such a portrait is a se
points on the plane (x,y) depicting instantaneous states of
large number of identical systems~an ensemble!, subjected
to identical realizations of the noise. Using the scaling pro
erties of the system in the presence of noise, it is possibl
obtain an estimate of the shift of the corner point of t
t
FIG. 9. Fourier spectra generated by the slave system at the bicritical point in presence of a noise source in the slave system ak50 and
«5«050.001~a!, «5«0n ~b!, «5«0n2 ~c!, and«5«n3 ~d!.
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region of hyperchaos from the bicritical point. That is, if
source of noise is present only in the master system,
displacement of the hyperchaos corner from the bicriti
point will behave as

FIG. 10. Lyapunov exponents vs noise intensity at the bicriti
point l5lc , A5Ac , and B50.375: ~a! and ~b! with the noise
source in the master map, and~c! in the slave map. Observe that th
self-similarity of the pictures under scale changes with facto
along the vertical axes, and with factorsg56.619@diagrams~a! and
~b!# andn52.713@diagram~c!# along the horizontal axes.
06620
e
l

Dl}ka, DA}kb, ~24!

where

a5 logg d1>0.815359 and b5 logg d2>0.461617.
~25!

If the source of noise is added only to the slave syste
then

Dl50, DA}kc, ~26!

l

2

FIG. 11. Lyapunov charts demonstrating scaling in a neighb
hood of the bicritical point:~a! the noise source in the master su
system, and~b! in the slave subsystem. The first plot~a! corre-
sponds to the noise intensity parameterk50.01, which is decreased
by factorg56.619 . . . for each next diagram in the row. The firs
diagram~b! corresponds to«50.06, and others to the values subs
quently rescaled byn52.713 . . . . Thegray scale coding for the
Lyapunov exponentL2 is redefined at each new level of magnifi
cation to make the similarity clearly visible.
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FIG. 12. Snapshot phase po
traits at some representative poin
of the parameter plane for an en
semble of about 105 copies of the
system effected by an identica
sample of the noise after 768 it
erations. Initial conditions were
chosen randomly from the squar
21<x<1,21<y<1. Noise is
present both in the master an
slave subsystems,k5«50.05.
The marks Ch-I and Ch-II desig
nate regimes with one positive
Lyapunov exponent relating to th
master and slave subsystems, a
Hyper designates the regime o
two positive Lyapunov exponent
and hyperchaos in the noisy sys
tem. The bicritical point found in
absence of noise is marked asB.
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FIG. 13. Shift of the parametersl andA vs the intensity of noise added in the master@~a! and~b!# and in the slave subsystem~c! on a
double logarithmic scale. The straight lines show the slopes corresponding to the power-law estimates@Eqs.~24!–~27!#.
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c5 logn d2>0.873909. ~27!

The double-logarithm plots shown in Fig. 13 present d
of computations supporting these scaling estimates.
straight lines are drawn with a slope corresponding to
predicted critical indices@Eqs.~24! and ~27!#.

VI. CONCLUSION

We have discussed scaling regularities associated with
effect of additive noise on the bicritical behavior in the sy
tem of two unidirectionally coupled quadratic maps, both
which are brought to the threshold of chaos by adjustmen
their two control parameters. A renormalization group ana
sis of the effect of noise was developed, and respective
versal functions and constants were computed. We outli
the qualitative and quantitative differences between the
sponse with respect to random perturbations added to
master system and to the slave system. In particular, the
versal constants determining the rescaling rules for the
rameters of the intensity of the noise sources in the ma
and slave subsystems were found to beg56.619036 . . . and
n52.713708 . . . , respectively. We also presented a numb
of computer graphical illustrations for the scaling regula
y
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ties. In particular, we paid attention to the smearing of
fine structure of the bicritical attractor and the Fourier sp
tra due to the presence of noise. We discussed the self-sim
structure of the Lyapunov charts on the parameter plane
the bicritical point, and the shift of the hyperchaos thresh
in dependence of the noise intensity.

We considered a particular representative of the univer
ity class~two coupled one-dimensional maps!. Nevertheless,
on the basis of RG argumentation, we may conjecture
the same regularities will be intrinsic to a wide class of s
tems composed of two period-doubling subsystems with u
directional coupling. We expect that these results will
helpful for experimental researches aimed at the observa
and investigation of bicritical behavior in systems of diffe
ent physical natures. In this connection, we emphasize
the influence of noise is much stronger when the noise
added to the master system than to the slave system. H
in the experiments one should pay particular attention to
reduction of noise in the master system.
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